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SUMMARY

A Petrov–Galerkin method for computations of fully enclosed �ows is developed. It makes use of
divergence-free basis functions which also satisfy the boundary conditions for the velocity �eld. This
allows the elimination of the unknown pressure. The computational procedure reduces to the solution of
a system of non-linear �rst-order ordinary di�erential equations for the spectral expansion coe�cients.
We illustrate the e�ectiveness and accuracy of the method by solving the problem of the two-dimensional
thermoconvective �ow in a rectangular cavity of aspect ratio 8 at Rayleigh number 3:4× 105. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Spectral and, in particular, Galerkin-type methods are usually the �rst methods of choice when
high accuracy of results is required in the solution of partial di�erential equations. But when a
very large number of spectral modes is necessary to resolve the �ne structures of the solution,
the application of spectral methods might become computationally very expensive.
The proposed method (see Reference [1]) takes into account some of the properties of the

�ow and incorporates them into the construction of speci�c basis functions. This guarantees
a faster convergence rate than obtained using conventional spectral methods.

2. PROBLEM FORMULATION

We consider the two-dimensional �ow of a �uid with Prandtl number Pr= �=�=0:71 in a rect-
angular enclosure of aspect ratio A=H=W =8 at the Rayleigh number Ra=�g�TW 3=(��)=
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3:4× 105 as introduced in Christon et al. [2]. The dimensionless governing equations,
corresponding to conservations of mass, momentum and energy, under the Boussinesq
approximation, are given by

∇ · u=0 (1)

@u
@t
+ �× u=−∇P − �n+

√
Pr
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∇2u (2)
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+ u · ∇�=
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Pr Ra
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where u=(u; v; 0)T is the velocity vector, P=p+|u|2=2 is the total pressure, and n=(0;−1; 0)T
is the unit vector in the direction of gravity. Note that it is advantageous to introduce the
vorticity vector �=(0; 0; @v=@x−@u=@y)T since in this case only two velocity derivatives enter
the convective terms of the momentum equations instead of four.
Boundary conditions at the walls are

u= 0 at x=0; 1 and y=0; A

�= ± 1
2 at x=0; 1 and

@�
@y
=0 at y=0; A (4)

The initial conditions used are u0 = 0 and �0 = 1
2 − x.

3. METHOD OF SOLUTION

To solve the system of Boussinesq equations (1)–(3) we require the spectral expansion bases
to satisfy the following conditions: (1) the basis functions for velocity are divergence free,
(2) the basis functions satisfy homogeneous boundary conditions, (3) the basis functions are
complete in the space of continuous functions and (4) the system of approximate equations
results in sparse matrices. These criteria lead to the following expansions for the unknown
functions: (

u
v

)
=
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L∑
j=0

Cij(t)
(

gi(x) · h′j(y=A)
−Ag′i(x) · hj(y=A)
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Dij(t) ·pi(x) · rj(y=A)
(5)

with Cij(0)=Dij(0)=0, where, upon using the transformations x̃=2x − 1 and ỹ=2y=A− 1,
we have for i; j=0; 1; 2; : : :

gi(T (x̃)) = Ti(x̃)− 2
(
i + 2
i + 3

)
Ti+2(x̃) +

(
i + 1
i + 3

)
Ti+4(x̃)

hj(T (ỹ)) = Tj(ỹ)− 2
(

j + 2
j + 3

)
Tj+2(ỹ) +

(
j + 1
j + 3

)
Tj+4(ỹ)

pi(T (x̃)) = Ti(x̃)− Ti+2(x̃); rj(T (ỹ))=Tj(ỹ)−
(

j
j + 2

)2
Tj+2(ỹ)

(6)
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Here Ti(x̃)= cos(i arccos(x̃)) are the Chebyshev polynomials of the �rst kind which are
complete in the space of continuous functions on the interval −16x61.
Next we apply a Petrov–Galerkin procedure with the following test functions:

fmn =

(
gm(T (x̃)=

√
1− x̃2) · h′n(T (ỹ)=

√
1− ỹ2)

−Ag′m(T (x̃)=
√
1− x̃2) · hn(T (ỹ)=

√
1− ỹ2)

)

qmn =pm(T (x̃)=
√
1− x̃2) · rn(T (ỹ)=

√
1− ỹ2)

(7)

These functions are chosen to satisfy the homogeneous boundary conditions and the diver-
gence-free condition for the velocity test functions. The Chebyshev weights are introduced
to take advantage of the orthogonality property of Chebyshev polynomials which guarantees
the sparseness of the resulting matrices. The inner product of the vector momentum equation
with the velocity test function fmn is computed next. Note that for an arbitrary scalar function
P and a divergence-free vector �eld fmn which satis�es zero boundary conditions∫

V
∇P · fmn dV =−

∫
V
P∇ · fmn dV +

∫
S
P fmn dS≡ 0 (8)

where V and S denote the volume and surface of the domain, respectively. Thus, the pressure
is eliminated from the approximate equations identically. We also integrate the thermal energy
equation over the volume after multiplying it by the test function qmn. Thus, the Petrov–
Galerkin procedure results in a system of non-linear ordinary di�erential equations for the
spectral coe�cients

SẊ=AX+ F
where

X=
(
C
D

)
; S=

(
S� 0
0 Sqq

)

A=

(√
Pr=RaA� Afq

Aqf Aqq=
√
PrRa

)
; F=

(
CTB�fC + F�

CTBqfqD

) (9)

Subscripts denote products of the basis functions participating in the Petrov–Galerkin inte-
gration. The coe�cients A� , Afq, Aqf , Aqq, B�f , Bqfq, and F� consist of the inner products of
Chebyshev polynomials which can be obtained analytically using integration by parts and the
orthogonality property of Chebyshev polynomials.
By reordering the equations in the system the sparse matrices S and A are rearranged to

block cyclic form [1]. The problem then is split into two parts coupled only through the
non-linear terms in the vector F. The �rst part corresponds naturally to the centro-symmetric
solution, while the second part results in the centro-symmetry-breaking solution (see Reference
[2] for de�nitions of symmetries). The full solution to the problem is a result of non-linear
coupling between these two basic solutions. As follows from Equation (9) with the adopted
(centro-symmetric) initial conditions Cij=Dij=0, the only non-zero forcing term which a�ects
the initial motionless conduction state is F� which traces back to the buoyancy term in the
vertical momentum equation. Only one component of this vector corresponding to i= j=0
is non-zero due to the special choice of the test functions and the orthogonality property of
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Chebyshev polynomials. This term, through its e�ect on the �rst linearly decoupled block,
induces only a centro-symmetric solution such that

Cij=0 if i + j is odd and Dij=0 if i + j is even (10)

The centro-symmetry-breaking component of the full solution then can develop only through
feeding the truncation errors via the non-linear coupling in vector F into the second linearly
decoupled block of the problem provided that the centro-symmetric solution is unstable with
respect to symmetry-breaking disturbances and the truncation errors are indeed symmetry
breaking. The natural splitting of the original problem into centro-symmetric and symmetry-
breaking parts makes the linear stability analysis of these solutions very straightforward, al-
though it will not be discussed here. The special form of matrices A and F also allows one to
solve the problem by partitioning which would reduce the computational cost further, but this
has not been done in the current computations. Further optimization of the solution procedure
is possible if use is made of special sparse matrix solvers for multi-diagonal systems. At this
point we have not focused our attention on this issue either, and subsequently have used a
general sparse matrix package (YSMP).
The procedure just described is ideal if one is interested in the low-order dynamical system

approximating the given problem. In this case all integrals, including triple products entering
the non-linear terms, can be computed analytically and stored. Then the system of �rst-order
ordinary di�erential equations with known constant coe�cients can be solved using any ap-
propriate initial value integration technique. When accurate solutions are required for higher
values of Rayleigh numbers, the total number of spectral modes becomes large. The storage
space required for triple product integrals in the two-dimensional case is proportional to N 6,
where N is the number of modes in one direction (assumed equal in each direction). Thus
memory limitations become extremely restrictive for the proposed method. Alternatively, a
direct calculation of triple products at each time step makes the method extremely time con-
suming. Fortunately, this last di�culty can be resolved since the Chebyshev polynomial basis
enables the use of fast Fourier transforms (FFTs) which require only O(Nn lnN ) operations
to evaluate nonlinear terms, where n is the spatial dimension of the problem. Algorithmi-
cally, we �rst �nd the expansions for �, u and ∇� (the convection components) in terms of
Chebyshev polynomials using recurrence di�erentiation formulae applied to the original ex-
pansion. Then we apply the inverse 2D FFT to �nd the values of �, u and ∇� at 2N × 2N
Gauss–Lobatto collocation points. The choice of 2N collocation points in each direction al-
lows us to retain full spectral accuracy since it leads to the exact evaluation of triple-product
integrals. Lastly, we �nd values of non-linear terms in physical space using O(N 2) operations
and subsequently apply the forward 2D FFT to �nd the expansion of non-linear terms as
Chebyshev series. Since the expansion of the trial functions in terms of Chebyshev poly-
nomials is known, the integral evaluation reduces to the trivial use of orthogonality formulas.
To avoid the solution of the non-linear equations at each time step, and preserve the

stability characteristics of implicit schemes as much as possible, we implement a semi-implicit
time integration procedure combining the second order (implicit) Gear method for the linear
part and the second-order (explicit) Adams–Bashforth method for the non-linear term. In the
application to our matrix equation this becomes

(3S− 2�tA)Xn+1 =S(4Xn −Xn−1) + 2�t(2Fn − Fn−1) (11)
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If the time step �t is �xed then the matrix on the left-hand side of Equation (11) can
be inverted once and then the integration procedure reduces to matrix–vector multiplications
which can be accomplished e�ciently on parallel computers. The drawback of this is the
signi�cant increase of required computer memory as the inverse of the sparse matrix is much
less sparse than the original one. For this reason, in the current realization of the algorithm,
which ran on a serial computer, the memory saving option was used and the system of linear
Equations (11) was solved at every time step using YSMP.

4. RESULTS

The computations were performed on a Sun UltraSPARC 30, Model 300 with a 296 MHz
UltraSPARC-II CPU. The computational cost was approximately 3× 10−4 s=time step=mode.
Summaries of computed results are given in Tables I–VI and Figures 1 and 2. A major
observation from the results is that the �ow is periodic. Furthermore, because of the very
high accuracy of the algorithm and centro-symmetry of the initial conditions, machine round-
o� errors are also centro-symmetric when K =M =L=N . Subsequently, the skewness pa-
rameter �12 is identically zero whenever equal number of modes are used in the x and y
directions. This is indicated in Table I. In Reference [1] we have shown that the centro-
symmetry persists even in the chaotic regime occurring at higher Rayleigh numbers. However,
this centro-symmetric chaotic �ow is unstable to small symmetry breaking disturbances such

Table I. Numerical results at Point 1 (x=0:1810; y=7:3700) for 10006t61500 using
34.61 samples=period and 692.24 time steps=period.

K = L=M =N =50 K =M =50, L=N =70

Required memory: 91 MB Required memory: 155 MB

Quantity Average PVA Period Average PVA Period

u 0.05653 0.05575 3.4012 0.05661 0.05243 3.4012
v 0.46190 0.07840 3.4012 0.45995 0.07309 3.4012
� 0.26543 0.04352 3.4012 0.26784 0.04068 3.4012
�12 0 0 — 0.00466 0.01060 3.4012
 −0:07367 0.00715 3.4012 −0:07323 0.00667 3.4012
! −2:36620 1.10125 3.4012 −2:35484 1.02932 3.4012

K = L=M =N =70 K =M =70, L=N =100

Required memory: 260 MB Required memory: 483 MB

Quantity Average PVA Period Average PVA Period

u 0.05638 0.05466 3.4012 0.05653 0.05310 3.4012
v 0.46195 0.07698 3.4012 0.46039 0.07419 3.4012
� 0.26551 0.04260 3.4012 0.26728 0.04124 3.4012
�12 0 0 — 0.00352 0.00831 3.4012
 −0:07372 0.00699 3.4012 −0:07334 0.006763 3.4012
! −2:37216 1.07503 3.4012 −2:35820 1.04320 3.4012
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Table II. Numerical results at Point 1 (x=0:1810; y=7:3700) for 10006t61500 using
34.61 samples=period and 692.24 time steps=period; centro-symmetry is enforced.

K =M =50, L=N =70 K =M =70, L=N =100

Required memory: 78 MB Required memory: 245 MB

Quantity Average PVA Period Average PVA Period

u 0.05638 0.05466 3.4012 0.05634 0.05467 3.4012
v 0.46200 0.07699 3.4012 0.46190 0.07700 3.4012
� 0.26551 0.04260 3.4012 0.26552 0.04261 3.4012
�12 0 0 — 0 0 —
 −0:07372 0.00699 3.4012 −0:07371 0.00700 3.4012
! −2:37216 1.07501 3.4012 −2:37171 1.07555 3.4012

Table III. Wall Nusselt numbers for 10006t61500 using 34.61
samples=period and 692.24 time steps=period.

K = L=M =N =50 K =M =50, L=N =70

Quantity Average PVA Period Average PVA Period

Nu0 −4:57934 0.00730 3.4012 −4:56153 0.00670 3.4012
NuW −4:57934 0.00730 3.4012 −4:59737 0.00750 3.4012

K = L=M =N =70 K =M =70, L=N =100

Quantity Average PVA Period Average PVA Period

Nu0 −4:57947 0.00710 3.4012 −4:56590 0.00680 3.4012
NuW −4:57947 0.00710 3.4012 −4:59301 0.00740 3.4012

as those due to truncation errors occurring when di�erent numbers of spectral modes are used
in the x and y directions. Because of the natural partitioning between centro-symmetric and
symmetry-breaking modes discussed in Reference [1], it is straightforward to enforce centro-
symmetry even when di�erent number of modes are used in the x and y directions. This is
achieved by setting to zero the bottom half of all spectral coe�cients and using only the
top left quadrant in matrices A and S. The corresponding results are presented in Tables II,
IV and VI. In the tables we also report the time-averaged values, peak-to-valley amplitudes
and dominant periods computed from the results sampled between t=1000 and 1500 using
FFT. Note that these results change slightly for larger times when the number of modes
is di�erent in the x and y directions and centro-symmetry is not enforced. This indicates
that the �ow has not reached its steady state yet when symmetry breaking disturbances are
allowed. It is also found that the periodic �ow in the regime considered contains a second
harmonic with the frequency twice the dominant one. Its amplitude decays with time. Although
here we present only results for Ra=3:4× 105 and A=8 we have computed solutions for
various other regimes. For example, a steady solution exists for relatively small values of the
Rayleigh number and A=1. It has been shown in Reference [1] that in this case the accuracy
of our results is superior to that obtained by Le Qu�er�e [3] using a pseudo-spectral Chebyshev
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Table IV. Wall Nusselt numbers for 10006t61500 using 34.61 samples=period and
692.24 time steps=period; centro-symmetry is enforced.

K =M =50, L=N =70 K =M =70, L=N =100

Quantity Average PVA Period Average PVA Period

Nu0 −4:57947 0.00708 3.4012 −4:57946 0.00708 3.4012
NuW −4:57947 0.00708 3.4012 −4:57946 0.00708 3.4012

Table V. Square roots of global kinetic energy, û, and enstrophy, !̂, for 10006t61500
using 34.61 samples=period and 692.24 time steps=period.

K = L=M =N =50 K =M =50, L=N =70

Quantity Average PVA Period Average PVA Period

û 0.23954 4:07× 10−5 3.4012 0.23950 4:07× 10−5 3.4012
!̂ 3.01707 0.00326 3.4012 3.01716 0.00313 3.4012

K = L=M =N =70 K =M =70, L=N =100

Quantity Average PVA Period Average PVA Period

û 0.23951 4:07× 10−5 3.4012 0.23950 4:07× 10−5 3.4012
!̂ 3.01710 0.00318 3.4012 3.01713 0.00318 3.4012

Table VI. Square roots of global kinetic energy, û, and enstrophy, !̂, for 10006t61500
using 34.61 samples/period and 692.24 time steps/period; centro-symmetry is enforced.

K =M =50, L=N =70 K =M =70, L=N =100

Quantity Average PVA Period Average PVA Period

û 0.23951 3:46× 10−5 3.4012 0.23951 3:46× 10−5 3.4012
!̂ 3.01710 0.00319 3.4012 3.01710 0.00319 3.4012

algorithm. With the current Petrov–Galerkin formulation we obtain the same accuracy using
a substantially smaller total number of modes.

5. CONCLUSIONS

The developed Petrov–Galerkin method enables the e�cient and spectrally accurate solution of
incompressible fully enclosed �ows using primitive variables. Pressure is eliminated identically
from the system of equations by the special choice of the divergence-free basis satisfying ho-
mogeneous boundary conditions. Further reduction of the total number of unknown functions
is obtained since the two velocity components are represented by one set of spectral coe�-
cients. The even–odd decomposition of the modes is straightforward and allows to partition
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Figure 1. History of temperature at Point 1 (x=0:1810; y=7:3700), �1,
with detail, for K =M =50 and L=N =70.

Figure 2. History of temperature skewness between Point 1 (x=0:1810, y=7:3700) and Point 2 at
(x=0:8190, y=0:6300), �12, with detail, for K =M =50 and L=N =70.
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the problem leading to substantial computational savings. The numerical procedure is made
very e�cient by computing analytically and storing all necessary inner products and using
FFTs for the explicit evaluation of non-linear terms. Further increase of the e�ciency of the
method can be achieved through the use of specialized sparse matrix solvers and straightfor-
ward parallelization of the algorithm which have not been implemented at this stage. Although
not shown here, this technique is easily generalized to three dimensions resulting in even more
substantial computer storage and computational time savings in comparison with other spectral
techniques.
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